MENU MORE

A Brief History Of Time

by Stephen Hawking, 1988

Review is copyright 2016 by Wil C. Fry. All Rights Reserved.

Published: 2016.08.25



Copyright 2015 by Wil C. Fry.
Some rights reserved.
Full Title: A Brief History Of Time: From The Big Bang To Black Holes
Author: Stephen Hawking
Year: 1988 (mine was 1998, Bantam trade paperback, with a shortened title)
Genre: Nonfiction, Science
Publisher: Bantam Books Trade Paperbacks
ISBN 978-0-553-38016-3
View It On Amazon
Wikipedia Page


Summary


Listed at number seven among the 100 All-time Greatest Popular Science Books and selling more than 10 million copies in 20 years, physicist Stephen Hawking's first book, A Brief History Of Time, explores some of the basic questions of existence, such as: How did the universe come to be? What's going to happen to it? How does time work? The book covers the size and age of the universe, the beginning and end of it, black holes, various theories about time, and how the theory of general relativity fits in with the quest for a general theory of everything.

Widely regarded as one of the greatest minds of our time, Hawking's attempt to communicate complex science to the general public is written in a clear, almost elementary style, at least initially. (As more difficult concepts are introduced, the sentences become thicker, and the paragraphs longer.)

For example, when introducing the “uncertainty principle”, Hawking writes:
“The more accurately you try to measure the position of the particle, the less accurately you can measure its speed, and vice versa... Heisenberg’s uncertainly principle is a fundamental, inescapable property of the world.”


What I Liked Least About It


By far the most infuriating thing about this book was Hawking’s deliberate and repeated use of a non-standard way to communicate numbers. For example:
“The idea of inflation could also explain why there is so much matter in the universe. There are something like ten million million million million million million million million million million million million million million (1 with eighty zeroes after it) particles in the region of the universe we can observe. Where did they all come from?”
Nobody writes (or understands) numbers this way. The most common way to communicate large numbers in science writing is with scientific notation, something that’s common enough that the average person at least knows what you mean. Hawking could have saved quite a bit of space in the above paragraph by simply writing “10⁸⁰”, which is how any other writer would have handled it. Did he expect that repeating “million” fourteen times would somehow impress someone?

(Also, oddly enough, “ten” followed by fourteen instances of “million” would actually be one with eight-five zeroes after it, not eighty. So, it was not only a poor way to write the number, but inaccurate as well. It should have had “one hundred” with thirteen instances of “million”.)

A second thing that began to bug me was the gratuitous use of the word “God”, in places where it didn’t seem to belong. Knowing as I do that Hawking admitted in 2014 that he doesn’t believe in God (“I’m an atheist”), and that he most likely didn’t believe in God in 1988 when he inserted these phrases about God, it seems disingenuous and misleading. As late as 2007, he was still saying “the laws [of science] may have been decreed by God”, though some who have known him since the 1970s say he has been an atheist the entire time.

It’s not just a few mentions. The idea of God permeates this book. To be clear, I’m not complaining that he talks about God; nearly everyone I have ever known does that repeatedly. My complaint is that the talk of God seems wedged into the pages, even in places where it isn’t appropriate, despite the writer’s atheism. Here are two examples, the first using God in an appropriate manner, and the second not so much:
“Newton was very worried by this lack of absolute position, or absolute space, as it was called, because it did not accord with his idea of an absolute God. In fact, he refused to accept lack of absolute space, even though it was implied by his laws.”
“However, if we do discover a complete theory, it should in time be understandable in broad principle by everyone, not just a few scientists. Then we shall all, philosophers, scientists, and just ordinary people, be able to take part in the discussion of the question of why it is that we and the universe exist. If we find the answer to that, it would be the ultimate triumph of human reason — for then we would know the mind of God.”
Those are the final three sentences of the entire book. Later, in 2014, Hawking weakly tried to defend this phrasing: “What I meant by ‘we would know the mind of God’ is we would know everything that God would know if there was a God, but there isn’t.” If that is what he meant, it is easy enough to say: “for then we would know what a god would know”. I can’t imagine anyone but a very small fringe of scientific-minded theists being pleased with his original wording.


What I Liked Most About It


Despite regular accusations from the anti-science crowd that “science is a religion” (example), I found no leaps of faith or baseless assertions in this book (or in any other science-related book I’ve read recently). Where something is unknown, the author said it’s unknown. If something is assumed, he said it is assumed, and explained why it’s assumed. Hawking even questions the very foundation of how science formulates theories. For example:
“It turns out to be very difficult to devise a theory to describe the universe all in one go. Instead, we break the problem up into bits and invent a number of partial theories. Each of these partial theories describes and predicts a certain limited class of observations, neglecting the effects of other quantities, or representing them by simple sets of numbers. It may be that this approach is completely wrong. If everything in the universe depends on everything else in a fundamental way, it might be impossible to get close to a full solution by investigating parts of the problem in isolation.”
This kind of language is exactly why I like science. It uses terms like “as far as we know”, “to the best of our knowledge”, “recent studies have shown”, “with a few exceptions, which I will mention below”, and so on. When contrasted with the firm language of religion (“absolute”, “always”, and “every”), it shows that science is a quest for knowledge rather than an assertion of it. Science tends to recognize what it doesn’t yet know; in fact, what isn’t known is the very reason for the existence of science.

Unlike the last book I reviewed, many of the ideas presented in this one did not make sense intuitively to me. Each of us grows up with an idea of the universe based on how it was first explained to us in our earliest days. It does not feel correct that the universe expanded out of an infinitely small point, or that it will someday contract back to that point — which is the most common scientific model of the universe. So when Hawking got to the point of explaining that it is possible, mathematically, for the universe to be finite without a singularity, I felt something like relief.
“It is possible for space-time to be finite in extent and yet to have no singularities that formed a boundary or edge. Space-time would be like the surface of the Earth, only with two more dimensions. The surface of the Earth is finite in extent, but it doesn’t have a boundary or edge... so there would be no need to specify the behavior at the boundary.”
In fact, each time I was starting to feel lost, Hawking would add something that grounded me just a little.


Additional Note


One thing that surprised me in several places were the dates of the discoveries, when compared to the dates I went to school and what I was (or was not) taught. For example, Hawkings says that the idea of electrons orbiting nuclei like planets orbiting a sun was an idea from the “beginning” of the 20th Century, and that it was overturned not too long after. Yet I was taught the old orbiting theory in the 1980s.

He also mentions that quarks were discovered in the 1960s, and much more work was done on them in the 1970s. My science books in high school in the 1980s didn’t mention them. The proton, neutron, and electron were said to be the smallest indivisble particles known.

It was frustrating to read these dates and realize that I was taught material that was known at the time to be incorrect. I thought quarks were discovered in the 1990s, because that’s when I first heard about them.

Hawking addresses this problem somewhat later in the book, when he talks about the increased pace of scientific discovery:
“In Newton’s time it was possible for an educated person to have a grasp of the whole of human knowledge, at least in outline. But since then, the pace of the development of science has made this impossible. Because theories are always being changed to account for new observations, they are never properly digested or simplified so that ordinary people can understand them. You have to be a specialist, and even then you can only hope to have a proper grasp of a small proportion of the scientific theories. Further, the rate of progress is so rapid that what one learns at school or university is always a bit out of date.”


Conclusion


I would recommend this book to anyone interested in science in general, or especially cosmology. I will probably read it again in a few years, to see if I feel any differently about it then.








comments powered by Disqus